If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+10x-1=23
We move all terms to the left:
x^2+10x-1-(23)=0
We add all the numbers together, and all the variables
x^2+10x-24=0
a = 1; b = 10; c = -24;
Δ = b2-4ac
Δ = 102-4·1·(-24)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-14}{2*1}=\frac{-24}{2} =-12 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+14}{2*1}=\frac{4}{2} =2 $
| -2x-6=1/2x-1 | | -82x+352+8=-1936 | | (x÷8)-1=-16 | | 5m+12=62 | | -13u+-6u+2u+12u-5u+-10=10 | | -1=-3x+6 | | 6a-4=80 | | 2x-1=-4x-7 | | x^2-13+24=0 | | -2(3x+7)=3x | | 50=5a2 | | 13x=29=5x-51 | | 8d-6d-1=11 | | x7+24=24 | | -6(8-7x)=228 | | 36(-0.29)-6b+6=0 | | 7-20/x=9 | | 8k+3k-3k-6=18 | | -95=-5(2n+5) | | 25-4r=37 | | j+6j-5j=16 | | 144+x=-12(x+5) | | 3x+0.1=xx | | 2/15x=1/15x+5 | | 11x-4=105 | | 3x+5=12x+25 | | 11x-4=138 | | (2/15)x=(1/15)x+5 | | 126=-7(6+3k) | | 8a-7=9 | | -2(1-8r)=-115 | | 6x-3-1118x=2 |